Abstract

High throughput sequencing has spurred the development of metagenomics, which involves the direct analysis of microbial communities in various environments such as soil, ocean water, and the human body. Many existing methods based on marker genes or k-mers have limited sensitivity or are too computationally demanding for many users. Additionally, most work in metagenomics has focused on bacteria and archaea, neglecting to study other key microbes such as viruses and eukaryotes. Here we present a method, MiCoP (Microbiome Community Profiling), that uses fast-mapping of reads to build a comprehensive reference database of full genomes from viruses and eukaryotes to achieve maximum read usage and enable the analysis of the virome and eukaryome in each sample. We demonstrate that mapping of metagenomic reads is feasible for the smaller viral and eukaryotic reference databases. We show that our method is accurate on simulated and mock community data and identifies many more viral and fungal species than previously-reported results on real data from the Human Microbiome Project. MiCoP is a mapping-based method that proves more effective than existing methods at abundance profiling of viruses and eukaryotes in metagenomic samples. MiCoP can be used to detect the full diversity of these communities. The code, data, and documentation are publicly available on GitHub at: https://github.com/smangul1/MiCoP .

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.