Abstract
The chemical interfacial modification of organic solvent soluble 2.4 ± 0.5 nm maleimide-modified monolayer protected gold nanoparticles (2-C(12)AuNPs) with primary or secondary amines via Michael addition reactions is demonstrated. Michael addition reactions between 2-C(12)AuNPs and primary or secondary amines at ambient temperature and pressure and under the conditions where the AuNP is soluble and stable are possible albeit sluggish, often taking days to weeks to go to completion. The rates and efficacies of the these same reactions are drastically increased at hyperbaric pressure conditions (11 000 atm) with no observed adverse effect to the gold nanoparticle stability. The resulting Michael addition adducts (3-C(12)AuNPs) formed from 2-C(12)AuNPs and the corresponding amines were characterized by TEM and by comparison of the (1)H NMR spectra of the 3-C(12)AuNPs with those of model reactions of the same amines with N-dodecylmaleimide, 2. The Michael addition reactions occur more readily with 2 rather than 2-C(12)AuNPs, consistent with the local environment of the latter imposing additional steric or other barriers to the reaction. The use of hyperbaric conditions makes the reaction of the organic solvent soluble 2-C(12)AuNP via Michael addition a viable interfacial modification process that is otherwise impractical. The results also suggest that it is a useful protocol for facilitating Michael addition reactions generally in solution at low temperatures.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.