Abstract

1H nuclear magnetic resonance (NMR) spectroscopy has been applied to study the temperature and concentration-induced micellization of a poly(ethylene oxide) (PEO) and poly(propylene oxide) (PPO) triblock copolymer, Pluronic P105, in D 2O solutions in the temperature range from 5 to 45 °C and the concentration range from 0.01 to 15% (w/v). The intrinsic probes, the chemical shift, and the half-height width of the PO CH 3 signal are very sensitive to the local environment and can be used to characterize the temperature and concentration-dependent aggregation process. When the temperature approaches the critical micellization temperature or the polymer concentration reaches the critical micellization concentration, the chemical shift of the PO CH 3 signal moves toward lower ppm values and the half-height width of the PO CH 3 signal shows a sudden increase. It indicates that the methyl groups are experiencing a progressively less polar environment and transferring from water to the hydrophobic micellar core. The hydrodynamic radius of the unimers and the micelles are determined as be 1.8 and 5.0 nm by means of pulsed-field gradient spin-echo (PGSE) NMR. They were independent of temperature and concentration. The drastic shortening of spin–lattice relaxation time T 1 for the PO CH 3/ CH 2 protons in the transition region suggested that the PPO blocks are located in a “liquid-like” micellar core, whereas the exponential increase of T 1 for the PEO CH 2 protons implied that the PEO blocks are still keeping in contact with surrounding water. Thermodynamics analysis according to a closed association model shows that the micellization process is entropy-driven and has an endothermic micellization enthalpy.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.