Abstract

In this study, by applying a combined approach of NMR measurements and molecular modelling, the conformations and the interactions with membrane-like environment of five arginine vasopressin (AVP) or oxytocin (OT) analogues modified with Cα-disubstituted cis-1-amino-4-phenylcyclohexane-1-carboxylic acid in position 2 have been determined. In addition, the AVP analogues were prepared in N-acylated forms with various bulky acyl groups. All of the peptides studied interacted with the mixed dodecylphosphocholine:sodium dodecyl sulphate micelle, providing a model of biological membrane. A different polarities of the AVP- and OT-like peptides resulted in their different position relative to the micelle surface. Thus, the arrangement of the former was nearly perpendicular, whereas the latter was rather parallel to the micelle's surface. Moreover, the results of our studies have shown that the binding sites for antagonists may be overlapped with that for agonists, as well as it may be quite different. Nevertheless, the aromatic–aromatic contacts represent the most important interactions for antagonists, whereas the hydrophilic interactions seem to be crucial for agonists.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call