Abstract
Micellar-enhanced ultrafiltration (MEUF) was applied to the separation of phenolic compounds p-nitrophenol (PNP), p-chlorophenol (PCP), p-cresol (PC) and phenol (P) from effluents using a hydrophilic polyethersulfone ultrafiltration membrane. Cationic cetylpyridinium chloride (CPC), nonionic TX-100 and anionic sodium dodecyl benzene sulfonate (SDBS) were chosen as the surfactants. Several important parameters, i.e. the separation efficiency, the distribution coefficient of phenolic compounds and the removal ratio of surfactants, were investigated. It was shown that the separation efficiency and the distribution coefficient of phenolic compounds ascended with the increasing surfactant concentration and could be arranged as the following order: PNP>PCP>PC>P. Moreover, in the case of phenolic compound separation, CPC achieved the highest treatment efficiency, and the separation efficiency of SDBS was a little lower than that of TX-100. The removal ratios of the same surfactant when treating different phenolic effluents were nearly similar. However, when treating the same phenolic compound, the sequence of the surfactant rejection was in the following order: TX-100>CPC>SDBS. These results indicate that CPC has a distinct superiority in the treatment of phenolic effluents via the MEUF process, and PNP easily solubilizes in the surface of the micelles.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Water science and technology : a journal of the International Association on Water Pollution Research
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.