Abstract
This study scrutinizes the self-association of ethylene oxide (EO)-propylene oxide (PO)-based star-shaped block copolymers as normal Tetronic® (T904) and reverse Tetronic® R (T90R4) with varying molecular characteristics and different hydrophilic-hydrophobic ratios in an aqueous solution environment. These thermo-responsive solutions appear clear, transparent or bluish up to 10%w/v, which anticipated the probable transition of unimers to spherical or ellipsoidal micelles which is complemented by scattering experiments. In a single-solution environment, 10%w/v T904 formed star-shaped micelles at ambient temperature and exhibited a micellar growth/transition with temperature ageing. While 10%w/v T90R4 exists as unimers or a Gaussian coil over a wide range of temperature. Very interestingly, close to the cloud point (CP) flower-shaped spherical and ellipsoidal micelles were formed. A similar proposed micellar scheme was also examined for mixed systems T904 : T90R4 in varying ratios (1 : 0, 3 : 1, 1 : 1, 1 : 3 and 0 : 1) giving an account to the solution behavior of the mixtures. An amalgamation of dynamic light scattering (DLS) and small-angle neutron scattering (SANS) techniques achieved the thorough extraction of the structural parameters of the micellar system. The hydrodynamic diameter (Dh) of the micelles with temperature variation was evaluated from dynamic light scattering (DLS) while the structure factor of the micelles was found by employing small-angle neutron scattering (SANS). Furthermore, the single and mixed micellar systems were quantitatively and qualitatively examined for anticancer drug solubilization using UV-vis spectroscopy for their superior use as potential nanocargos.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.