Abstract

Patients with diabetes are at an increased risk for acute kidney injury (AKI) after renal ischemia/reperfusion injury (IRI). However, there is a lack preclinical models of IRI in established diabetes. The current study characterized renal IRI in mice with established diabetes and investigated potential therapies. Diabetes was induced in C57BL/6J mice by low-dose streptozotocin injection. After 7 weeks of sustained diabetes, mice underwent 13 minutes of bilateral renal ischemia and were euthanized after 24 hours of reperfusion. Age-matched, nondiabetic controls underwent the same surgical procedure. Renal IRI induced two- and sevenfold increases in plasma creatinine level in nondiabetic and diabetic mice, respectively (P<0.001). Kidney damage, as indicated by histologic damage, tubular cell death, tubular damage markers, and inflammation, was more severe in the diabetic IRI group. The diabetic IRI group showed greater accumulation of spleen tyrosine kinase (Syk)-expressing cells, and increased c-Jun N-terminal kinase (Jnk) signaling in tubules compared to nondiabetic IRI. Prophylactic treatment with a Jnk or Syk inhibitor substantially reduced the severity of AKI in the diabetic IRI model, with differential effects on neutrophil infiltration and Jnk activation. In conclusion, established diabetes predisposed mice to renal IRI-induced AKI. Two distinct proinflammatory pathways, JNK and SYK, were identified as potential therapeutic targets for anticipated AKI in patients with diabetes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.