Abstract

Successful navigation in complex acoustic scenes requires focusing on relevant sounds while ignoring irrelevant distractors. It has been argued that the ability to track stimulus statistics and generate predictions supports the choice of what to attend and what to ignore. However, the role of these predictions about future auditory events in drafting decisions remains elusive. While most psychophysical studies in humans indicate that expected stimuli are more easily detected, most work studying physiological auditory processing in animals highlights the detection of unexpected, surprising stimuli. Here, we tested whether in the mouse, high target probability results in enhanced detectability or whether detection is biased towards low-probability deviants using an auditory detection task. We implemented a probabilistic choice model to investigate whether a possible dependence on stimulus statistics arises from short-term serial correlations or from integration over longer periods. Our results demonstrate that target detectability in mice decreases with increasing probability, contrary to humans. We suggest that mice indeed track probability over a timescale of at least several minutes but do not use this information in the same way as humans do: instead of maximizing reward by focusing on high-probability targets, the saliency of a target is determined by surprise.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call