Abstract
Pharmacologic studies suggest that the release of nitric oxide (NO) by endothelial NO synthase (eNOS) contributes to functional alterations of the peritoneal membrane (PM) induced by acute peritonitis. In this study, peritoneal permeability parameters in a mouse model of peritoneal dialysis were characterized, and the effects of eNOS deletion on the PM structure and permeability at baseline and after catheter-induced bacterial peritonitis were examined. Exposure of C57BL/6 mice to standard dialysate yielded a transport of urea and glucose, a sodium sieving, and a net ultrafiltration that were remarkably similar to the values obtained in rats. In comparison with controls, mice with catheter-induced peritonitis were characterized by structural changes in the PM (mononuclear cells infiltrate, vascular proliferation), upregulation of endothelial and inducible NOS, increased permeability for urea and glucose, decreased ultrafiltration, and increased protein loss in the dialysate. Comparison of eNOS wild-type and knockout mice revealed that the permeability modifications and structural changes induced by acute peritonitis were significantly reversed in eNOS knockout mice, resulting in a net increase in ultrafiltration. In contrast, the deletion of eNOS in mouse peritoneum was not reflected by permeability modifications or structural changes at baseline. These results are the first to take advantage of a knockout mouse model to demonstrate directly the crucial importance of eNOS in the permeability and structural modifications caused by acute peritonitis. The characterization of this mouse model suggests that genetically modified mice represent useful tools to investigate the molecular bases of the peritoneal changes during peritoneal dialysis.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of the American Society of Nephrology : JASN
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.