Abstract

Heat shock proteins (HSPs) are induced in response to oxidative stress, hypoxia–ischemia, and neuronal injury and play a protective role. Malonate and 3-nitropropionic acid (3-NP) are well-characterized animal models of Huntington's Disease (HD). They inhibit succinate dehydrogenase, inducing mitochondrial dysfunction, which triggers the generation of superoxide radicals, secondary excitotoxicity, and apoptosis. In this study, we examined whether the 70-kDa heat shock protein (HSP-70) is protective against neurotoxicity induced by malonate and 3-NP. Homozygous and heterozygous HSP-70 overexpressing mice (HSP-70+/+, HSP-70+/−) and wild-type controls received 3-NP or malonate and striatal lesion sizes were evaluated by stereology. Compared to HSP-70+/+ and HSP-70+/−, wild-type controls showed significantly larger striatal lesions following 3-NP or malonate injections. These findings support the idea that HSP-70 has a neuroprotective role that may be useful in the treatment of neurodegenerative diseases.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.