Abstract

We report an unexpected link between aging, thermogenesis and weight gain via the orphan G protein-coupled receptor GPR3. Mice lacking GPR3 and maintained on normal chow had similar body weights during their first 5 months of life, but gained considerably more weight thereafter and displayed reduced total energy expenditure and lower core body temperature. By the age of 5 months GPR3 KO mice already had lower thermogenic gene expression and uncoupling protein 1 protein level and showed impaired glucose uptake into interscapular brown adipose tissue (iBAT) relative to WT littermates. These molecular deviations in iBAT of GPR3 KO mice preceded measurable differences in body weight and core body temperature at ambient conditions, but were coupled to a failure to maintain thermal homeostasis during acute cold challenge. At the same time, the same cold challenge caused a 17-fold increase in Gpr3 expression in iBAT of WT mice. Thus, GPR3 appears to have a key role in the thermogenic response of iBAT and may represent a new therapeutic target in age-related obesity.

Highlights

  • We report an unexpected link between aging, thermogenesis and weight gain via the orphan G protein-coupled receptor GPR3

  • Gpr[3] is expressed in several metabolically active peripheral tissues, at lower levels than in the central nervous system (CNS) (Fig. 1A), and its partial or total deletion leads to genotype-specific changes in body weights of older (12-month-old) mice (Fig. 1B)

  • Over the course of one year, GPR3 heterozygous (Het) and knockout (KO) mice maintained on a regular mouse chow gained on average ~15% and ~30% more weight, respectively, than their age-matched wild type (WT) littermates and were visually distinguishable from each other (Fig. 1B)

Read more

Summary

Introduction

We report an unexpected link between aging, thermogenesis and weight gain via the orphan G protein-coupled receptor GPR3. By the age of 5 months GPR3 KO mice already had lower thermogenic gene expression and uncoupling protein 1 protein level and showed impaired glucose uptake into interscapular brown adipose tissue (iBAT) relative to WT littermates. These molecular deviations in iBAT of GPR3 KO mice preceded measurable differences in body weight and core body temperature at ambient conditions, but were coupled to a failure to maintain thermal homeostasis during acute cold challenge. Mice lacking GPR3 display late-onset obesity associated with a reduction in uncoupling protein 1 protein level in iBAT and thermogenesis

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call