Abstract

The Endothelial Cell‐Selective Adhesion Molecule (ESAM) mediates inflammatory cell transmigration and also involved in pathological angiogenesis. Here we investigated the role of ESAM in affecting vasodilator and cardiac contractile function. To that end ESAM knockout and wild type (WT) mice were employed. Using transthoracic echocardiography it was found that ESAM knockout mice displayed left ventricle (LV) diastolic dysfunction, as indicated by a significantly reduced E/A ratio (E=early, A=late mitral inflow peak velocities), increased E/e’ ratio, isovolumic relaxation time (IVRT) and E wave deceleration time, with no change in the ejection fraction. The systolic blood pressure, as measured by tail‐cuff plethysmography, was not different between ESAM knockout and WT mice, whereas the heart to body weight ratio is increased in ESAM knockout mice. Using an unbiased automated tracing of the microvasculature we found a decreased vascularization (total vascular length) of the myocardium in ESAM knockout mice. In addition, vasodilator function of the pulmonary artery and aorta was assessed using wire myography. We found that the endothelium‐dependent, acetylcholine‐induced relaxation of the pulmonary artery was significantly reduced in ESAM knockout mice, whereas endothelium‐independent, sodium nitroprusside‐induced relaxation was similar in two groups. Thus, we conclude that ESAM deficiency causes vasodilator dysfunction, impaired angiogenesis underlying the development LV diastolic dysfunction.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.