Abstract

BackgroundThe type 1 interferon (IFN) response is part of the innate immune response and best known for its role in viral and bacterial infection. However, this pathway is also induced in sterile inflammation such as that which occurs in a number of neurodegenerative diseases, including neuronopathic Gaucher disease (nGD), a lysosomal storage disorder (LSD) caused by mutations in GBA.MethodsMice were injected with conduritol B-epoxide, an irreversible inhibitor of acid beta-glucosidase, the enzyme defective in nGD. MyTrMaSt null mice, where four adaptors of pathogen recognition receptors (PRRs) are deficient, were used to determine the role of the IFN pathway in nGD pathology. Activation of inflammatory and other pathways was analyzed by a variety of methods including RNAseq.ResultsElevation in the expression of PRRs associated with the IFN response was observed in CBE-injected mice. Ablation of upstream pathways leading to IFN production had no therapeutic benefit on the lifespan of nGD mice but attenuated neuroinflammation. Primary and secondary pathological pathways (i.e., those associated or not with mouse survival) were distinguished, and a set of ~210 genes including those related to sphingolipid, cholesterol, and lipoprotein metabolism, along with a number of inflammatory pathways related to chemokines, TNF, TGF, complement, IL6, and damage-associated microglia were classified as primary pathological pathways, along with some lysosomal and neuronal genes.ConclusionsAlthough IFN signaling is the top elevated pathway in nGD, we demonstrate that this pathway is not related to mouse viability and is consequently defined as a secondary pathology pathway. By elimination, we defined a number of critical pathways that are directly related to brain pathology in nGD, which in addition to its usefulness in understanding pathophysiological mechanisms, may also pave the way for the development of novel therapeutic paradigms by targeting such pathways.

Highlights

  • The type 1 interferon (IFN) response is part of the innate immune response and best known for its role in viral and bacterial infection

  • We have examined the effect of inducing neuronopathic Gaucher disease (nGD), using a chemical inhibitor, in a quadrat-deficient mouse with a combined deficiency of Toll-like receptors (TLR), Retinoic acid-inducible gene I (RIG)-I like receptor (RLR) and Stimulator of IFN genes (STING) signaling (Myd88-/,Trif-/,Mavs-/, Tmem173-/-), referred to as the MyTrMaSt mouse [12]

  • We demonstrate that the IFN pathway is not the initial cause for pathology in nGD, but rather a secondary pathological pathway since the lifespan of MyTrMaSt null mice was not altered upon Conduritol B-epoxide (CBE) injection compared with wild-type (WT) mice

Read more

Summary

Introduction

The type 1 interferon (IFN) response is part of the innate immune response and best known for its role in viral and bacterial infection. This pathway is induced in sterile inflammation such as that which occurs in a number of neurodegenerative diseases, including neuronopathic Gaucher disease (nGD), a lysosomal storage disorder (LSD) caused by mutations in GBA. The most important IFN-inducing cytosolic DNA sensing pathways is the cyclic guanosine monophosphate-adenosine monophosphate synthase (cGAS), stimulator of IFN gene (STING, TMEM173) axis. Upon binding of DNA, cGAS catalyzes the formation of the secondary messenger, 2′,3′-cyclic guanosine monophosphate-adenosine monophosphate (cGAMP), which binds STING and subsequently activates an antiviral cytokine response [9]

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call