Abstract

The glucocorticoid receptor NR3C1 is expressed in multiple cell types in the gut and elsewhere. Intestinal epithelial cells both produce and respond to glucocorticoids in different physiological and pathological contexts. In experimental colitis, glucocorticoids have been shown to exert a dual role, dampening inflammation while producing a deterioration in animal status, including death. Mice with tamoxifen-inducible, intestinal epithelial-specific deletion of NR3C1 (NR3C1ΔIEC mice) are protected against experimental colitis, suggesting glucocorticoid epithelial actions are deleterious. Since glucocorticoids modulate epithelial proliferation, it follows that they may affect the development of colon cancer. In this study, we set out to test this hypothesis using the dextran sulfate sodium-azoxymethane model of colitis-associated cancer. Knockout (KO) mice were found to exhibit a twofold higher tumor load but similar incidence and tumor size. Tumors had a higher trend to extend close to the submucosal layer (36% vs. 0%) in NR3C1ΔIEC mice, and overexpressed Lgr5, Egfr, and Myc, consistent with distinct expression of proliferative/stemness markers. Snai1 and Snai2 were upregulated specifically in tumors of NR3C1ΔIEC mice, suggesting enhanced epithelial to mesenchymal transition in the absence of the intestinal epithelial glucocorticoid (GC) receptor. We conclude that endogenous GC epithelial signaling is involved in colitis-associated cancer.NEW & NOTEWORTHY Mice carrying a tamoxifen-inducible deletion of the glucocorticoid receptor in intestinal epithelial cells (NR3C1ΔIEC mice) and their corresponding controls were subjected to the azoxymethane-dextran sulfate sodium model of colitis-associated cancer. KO mice exhibit a twofold higher tumor load, with a higher trend to extend close to the submucosal layer (36% vs. 0%), but with similar incidence and tumor size. Colonic tumors in NR3C1ΔIEC mice showed signs of increased neoplastic transformation and tumor-associated inflammation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.