Abstract

A previous survey of mouse inbred strains revealed a wide range in self-selected fat intake, from 26 to 83% of energy. The BALB/cByJ strain selected a lower percentage of fat intake (36%) than all other strains tested except for the CAST/Ei. BALB/cByJ mice are deficient in the short-chain acyl-CoA dehydrogenase (SCAD) enzyme due to a spontaneous mutation in Acads. We hypothesized that this deficiency would alter fat appetite and used three behavioral test paradigms to compare the response of BALB/cByKz. Acads -/- and BALB/cByKz. Acads +/+ mice to fat stimuli. First, during 10-day exposure to a macronutrient self-selection diet, Acads -/- mice consumed proportionately less fat and more carbohydrate than Acads +/+ mice, yet total energy intake was similar between strains. Next, in 48-h two-bottle preference tests, Acads +/+ mice displayed a preference for 50% corn oil, but Acads -/- mice did not. Finally, in brief-access taste tests employing successive 5-s presentations of corn oil in an ascending concentration series ending with 50%, there were no effects of strain on total licks, indicating that Acads does not alter acute orosensory response to this fat stimulus. With 15-s presentations, however, the Acads +/+ mice licked more of the 50% oil than Acads -/-, suggesting orosensory effects related to the increased exposure time. In contrast to corn oil, there were no strain differences in licking response to sucrose solution in either the two-bottle or brief-access taste tests. The observation that SCAD-deficient mice display altered postingestive responses to dietary fat provides further evidence for the metabolic control of feeding.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.