Abstract

At present, clinical outcomes of pancreatic cancer patients are still poor. New therapeutic targets for pancreatic cancer are urgently needed. Previous studies have indicated that Microtubule Associated Monooxygenase, Calponin and LIM Domain Containing 2 (MICAL2) is highly expressed in many tumors and promotes tumor progression. However, the role played by MICAL2 in pancreatic cancer remains unclear. Based on gene expression and clinical information from multiple datasets, we used comprehensive bioinformatics analysis in combination with tissue microarray to explore the function and clinical value of MICAL2. The results showed that MICAL2 was highly expressed in pancreatic cancer tissue and exhibited potential diagnostic capability. High expression of MICAL2 was also associated with poor prognosis and acted as an independent prognostic factor. MICAL2, mainly expressed in fibroblasts of pancreatic cancer, was closely related to metastasis and immune-related features, such as epithelial-mesenchymal transformation, extracellular cell matrix degradation, and inflammatory response. Furthermore, higher MICAL2 expression in pancreatic cancer was also associated with an increase in cancer-associated fibroblasts as well as M2 macrophage infiltration, and a reduction in CD8 + T cell infiltration, thereby facilitating the formation of an immunosuppressive microenvironment. Our results helped elucidate the clinical value and function in metastasis and immunity of MICAL2 in pancreatic cancer. These findings provided potential clinical strategies for diagnosis, targeted therapy combination immunotherapy, and prognosis in patients with pancreatic cancer.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call