Abstract

We have previously shown that cells infected with mouse hepatitis virus (MHV) bind rabbit, mouse, and rat IgG by the Fc portion of the IgG molecule. This Fc-binding activity appeared to be mediated by the MHV S protein. S protein could also be precipitated from MHV-infected cells by a monoclonal antibody directed against the murine Fc γ receptor (FcγR). To prove definitively that the S protein mediates Fc-binding activity, we have expressed the MHV S protein utilizing recombinant vaccinia viruses. The anti-FcγR monoclonal antibody, 2.4G2, precipitated recombinant S protein in cells of murine, human, and rabbit origin. Since the anti-Fc receptor monoclonal antibody does not react with human and rabbit Fc receptors these results demonstrate that the epitope recognized by this antibody is carried on the MHV S protein and is not murine in origin. Examination of various MHV isolates and escape mutants failed to identify the precise sequences in S responsible for the molecular mimicry of the murine FcγR. These data are consistent with the hypothesis that a previously identified region of similarity between the S protein and the FcγR mediates this activity. The Fc binding activity of S was expressed on the cell surface, since MHV-JHM-infected cells, but not uninfected cells, formed rosettes with anti-sheep red blood cell (SRBC) antibody-coated SRBC. The anti-FcγR monoclonal antibody neutralized MHV-JHM and inhibited syncytium formation induced by the MHV S protein.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.