Abstract
Background and objective: Medical image segmentation plays an important role in clinic. Recently, with the development of deep learning, many convolutional neural network (CNN)-based medical image segmentation algorithms have been proposed. Among them, U-Net is one of the most famous networks. However, the standard convolutional layers used by U-Net limit its capability to capture abundant features. Additionally, the consecutive maximum pooling operations in U-Net cause certain features to be lost. This paper aims to improve the feature extraction capability of U-Net and reduce the feature loss during the segmentation process. Meanwhile, the paper also focuses on improving the versatility of the proposed segmentation model.Methods: Firstly, in order to enable the model to capture richer features, we have proposed a novel multiscale convolutional block (MCB). MCB adopts a wider and deeper structure, which can be applied to different types of segmentation tasks. Secondly, a hybrid down-sampling block (HDSB) has been proposed to reduce the feature loss via replacing the maximum pooling layer. Thirdly, we have proposed a context module (CIF) based on atrous convolution and SKNet to extract sufficient context information. Finally, we combined the CIF module with Skip Connection of U-Net, and further proposed the Skip Connection+ structure.Results: We name the proposed network MHSU-Net. MHSU-Net has been evaluated on three different datasets, including lung, cell contour, and pancreas. Experimental results demonstrate that MHSU-Net outperforms U-Net and other state-of-the-art models under various evaluation metrics, and owns greater potential in clinical applications.Conclusions: The proposed modules can greatly improve the feature extraction capability of the segmentation model and effectively reduce the feature loss during the segmentation process. MHSU-Net can also be applied to different types of medical image segmentation tasks.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.