Abstract
Two-dimensional liner-on-plasma MHD computations have been performed to study the compression phase of an MTF system with a inverse Z-pinch target plasma. The simulations have been performed using a finite-difference, lagrangian, elastic-plastic MHD code with a frozen-magnetic-field approximation, coupled to a 3-D Monte Carlo neutron transport code. The MHD part of the code has been validated against published experimental data for cylindrical and quasi-spherical liner acceleration. In this paper, we first describe the computational model and its validation process. Apart from the MHD elastic-plastic model, this includes a short description of the method used to generate critical materials data, such as the equation of state of the liner material. We then summarize the results obtained for the compression and burn phases of an MTF system, including the interaction between liner instabilities and an initially-stable target plasma. Finally, we discuss the work in progress and list some areas of uncertainty.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.