Abstract

This research investigates the steady, two-dimensional, incompressible flow of a pseudoplastic Williamson fluid subjected to a linearly stretched sheet. The study incorporates the effects of magnetic fields, chemical reactions, and thermophoresis on fluid behavior. By applying boundary layer techniques and similarity transformations, the governing equations are simplified for numerical analysis. The MATLbvp4c solver is employed to solve the reduced equations. The obtained results are visually represented and thoroughly discussed to comprehend the model's physical characteristics. The investigation highlights the magnetic field's influence, chemical reaction, and impact of thermophoresis particle deposition on the flow behavior of Williamson fluid over the extended sheet. Findings: Moreover, significant roles are found for chemical reactions and thermophoresis parameters in determining the fluid concentration near the boundary layer. It is observed that an increase in the chemical reactions and thermophoresis parameters results in a reduced thickness of the fluid concentration near the boundary layer. Notably, an increase in Schmidt value also diminished the thickness of the fluid concentration close to the boundary layer. MHD parameter significantly influences the fluid's velocity and temperature near the surface. It has been noted that an increase in the MHD parameter decreases the fluid?s velocity and increases the temperature near the surface. The impact of skin friction coefficient and Nusselt number and the impact of mass transfer coefficient on Williamson fluid will be discussed. The findings acquired are examined in relation to existing research and the correlation is provide as table.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call