Abstract

Steady flow of a Casson fluid in the presence of a nanoparticle is studied. It is considered that the sheet is stretched in both the direction along the xy-plane. Moreover, we have considered the magnetohydrodynamics effect within the fluid and convective condition along the surface. Similarity transformation is used to convert the governing partial differential equations to a set of coupled nonlinear ordinary differential equations which are solved numerically. The behavior of emerging parameters are presented graphically and discussed for velocity, temperature, and nanoparticles fraction. Variation of the reduced Nusselt and Sherwood number against physical parameters are presented graphically. It is found that the reduced Nusselt number is the decreasing function and the reduced Sherwood number is the increasing function of Brownian parameter Nb and thermophoresis parameter Nt.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.