Abstract

The present paper deals with the MHD stagnation-point dissipative flow in a porous medium over a flat plate with variable wall temperature. The effects of viscous dissipation, Joule heating, and second-order slip on the flow field have been studied both numerically and graphically for several values of governing parameters. The physical model of the problem is governed by coupled partial differential equations reducible to a set of coupled nonlinear ordinary differential equations (ODEs) using similarity transformations. The system of the coupled nonlinear ODEs has been solved analytically using optimal homotopy analysis method (OHAM). The results obtained in the present analysis have been compared with the results available in the literature, and have been found in excellent agreement.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call