Abstract
The marginal stability of MHD modes is discussed in application for high beta multiple mirror experiments planned at Budker Institute of Nuclear Physics. Flute modes arc dangerous in axisymmetric systems with β < 1. In the case of “wall confined” plasmas, (β ≫ 1), pressure slightly varies along the radius providing less radial gradient and more stability against MHD modes. Effect of ion-ion viscosity becomes important in corrugated magnetic field. It results in the reduction of the growth rate by a factor β1/2. In the process of start up and plasma heating β < 1. If flute modes are stabilized during this period by the line-tying mechanizm ballooning modes are still unstable when β > βcr. A very low ballooning margin is predicted in multiple mirror with the large number of cells: βcr < π2 /N2. For the number of cells N ≃ 10: βcr ≃ 5%. Results of the calculations are discussed in the context of old and new multiple mirror experiments.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.