Abstract

We have analysed the edge stability of JET discharges with small edge localized modes (ELMs) using the high resolution Thomson scattering system for accurate edge profiles in the equilibrium reconstruction. For the reference plasmas with large Type I ELMs we confirm the results from earlier analyses that the edge stability is limited by intermediate-n peeling–ballooning modes with a relatively large radial extent. The double null configuration needed to replace Type I ELMs by smaller Type II ELMs considerably increases the stability against these modes while the stability against n = ∞ ballooning modes is not affected. When this is combined with high collisionality (which is the other requirement for Type II ELMs), we find that the plasma cannot reach the Type I ELM triggering peeling–ballooning mode stability boundary before it is destabilized by high-n ballooning modes resulting in more benign ELMs. The ELM mitigation by magnetic perturbation causes the edge stability to be limited by pure peeling modes with a narrow radial extent. This explains the smaller ELM size and also why the ELMs are not fully suppressed. The transition from Type I ELMs to Type III ELMs by increasing the edge radiation fully stabilizes the edge plasma against ideal MHD modes. Therefore, the Type III ELMs are due to be triggered by some other mechanism than an ideal MHD instability.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.