Abstract

The heat and mass transfer characteristics on unsteady squeezing flow of magnetohydrodynamic (MHD) Casson nanofluid with chemical reaction, thermal radiation and heat generation/absorption effects is investigated in this study. The influences of viscous and joule dissipation are also examined. The flow is caused by squeezing between two parallel plates embedded in a porous medium. The highly coupled nonlinear partial differential equations are reduced to a system of nonlinear ordinary differential equations via similarity transformations. The transformed equations are solved using numerical scheme of Keller-box method. The accuracy of present method is validated through comparison of skin friction coefficient, Nusselt and Sherwood numbers with previously published results. Comparisons reveal that good agreements are achieved. Graphical results for velocity, temperature and nanoparticles concentration are analysed with various parameters. Findings demonstrate that the fluid velocity and temperature enhance when the plates move closer. Besides, increase in Hartmann number suppressed the fluid velocity and concentration due to the presence of strong Lorentz forces. The Brownian motion boosts the fluid temperature and concentration. Moreover, nanoparticles concentration is found to be higher in constructive chemical reaction and opposite effect is observed in destructive chemical reaction.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.