Abstract

Abstract We performed axisymmetric, grid-based, ideal magnetohydrodynamic simulations of oscillating cusp-filling tori orbiting a non-rotating neutron star. A pseudo-Newtonian potential was used to construct the constant angular momentum tori in equilibrium. The inner edge of the torus is terminated by a ‘cusp’ in the effective potential. The initial motion of the model tori was perturbed with uniform sub-sonic vertical and diagonal velocity fields. As the configuration evolved in time, we measured the mass accretion rate on the neutron star surface and obtained the power spectrum. The prominent mode of oscillation in the cusp torus is the radial epicyclic mode. It would appear that vertical oscillations are suppressed by the presence of the cusp. From our analysis, it follows that the mass accretion rate carries a modulation imprint of the oscillating torus, and hence so does the boundary layer luminosity.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.