Abstract

Particle fluxes in the outer radiation belts can show substantial variation in time, over scales ranging from a few minutes, such as during the sudden commencement phase of geomagnetic storms, to the years-long variations associated with the progression of the solar cycle. As the energetic particles comprising these belts can pose a hazard to human activity in space, considerable effort has gone into understanding both the source of these particles and the physics governing their dynamical behavior. Computationally tracking individual test particles in a model magnetosphere represents a very direct, physically-based approach to modeling storm-time radiation belt dynamics. Using global magnetohydrodynamic models of the Earth–Sun system coupled with test particle simulations of the radiation belts, we show through two examples that such simulations are capable of capturing the outer zone radiation belt configuration at a variety of time scales and through all phases of a geomagnetic storm. Such simulations provide a physically-based method of investigating the dynamics of the outer radiation zone, and hold promise as a viable method of providing global nowcasts of the radiation environment during geomagnetically active periods.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.