Abstract

The problem of MHD mixed convection is analyzed in a lid driven cavity with corrugated wavy bottom wall filled with Cu-H2 O nanofluid in presence of internal heat source. The top and right walls of the cavity are maintained with a uniform cold temperature whereas the left wall and bottom wavy wall are kept adiabatic. The top wall is moving with a constant velocity upon its lid and a rectangular heat source is placed horizontally inside the cavity. The physical problem is characterized by 2D governing partial differential equations along with proper boundary conditions and are discretized using Galerkin’s finite element formulation. The study is executed by analyzing different ranges of geometrical, physical and nondimensional parameters namely, wave number of wavy surface (0 ≤ ≤ λ 4) , the ratio of heat source height and cavity height 1 3 1 20 a l  ≤ ≤      volume fraction of nanoparticle (0 ≤ ≤ ϕ 0.09) Hartmann number (0 ≤ ≤ Ha 90) and Richardson number (0.1≤ ≤ Ri 10) . The results indicate that heat transfer rate decreases with the increasing value of heat source height and cavity height ratio a L       . It decreases about 9% and 25% with the increasing ratio of a L from 1 20 to 1 10 and 1 5 respectively. It also reveals that heat transfer rate increases with the increasing value of wave number of corrugated wall. At Ri=1 and Ha=0 heat transfer rate increases about 9% and 16% with the increasing value of λ from 0 to 2 and 4 respectively for nanofluid with 6% of nanoparticle. Keywords: MHD; Nanoparticle; Nanofluid

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call