Abstract

Heat transfer is commonly utilized in diverse industrial applications, including the manufacturing of paper, the cooling of electrical devices, and the synthesis of new substances. Hence, this study aims to investigate the effect of heat generation/absorption on the steady magnetohydrodynamic (MHD) flow and heat transfer of Al2O3-Cu/H2O hybrid nanofluids over a permeable stretching/shrinking wedge. By using similarity transformation techniques, the governing equations of the hybrid nanofluids are transformed into similarity equations. The similarity equations are numerically solved using the MATLAB software's built-in bvp4c package. The findings show that hybrid nanofluids are seen to improve thermal efficiency in comparison to conventional fluid. In relation to heat transfer rate, the increase of magnetic parameters from 0.00 to 0.10 and 0.15 contributes approximately 12.3% and 18.8%, respectively. Meanwhile, as the heat generation parameter increases, the heat transfer rate decreases leading to an inefficient thermal system. The findings of this study are anticipated to contribute to the knowledge base of scientists and researchers in the field.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call