Abstract

A steady MHD free and forced convective viscous incompressible electrically conducting flow in a rotating channel under constant pressure gradient has been studied. An exact solution of the governing equations has been obtained in closed form. The numerical results for the velocity components, the induced magnetic field components and the temperature distribution are being presented graphically. The shear stresses and critical Grashof numbers at the lower and upper plates have been calculated. The heat transfer characteristics have also been studied on taking viscous and Joule dissipations into account. The rate of heat transfer at the lower plate increases whereas the rate of heat transfer at the upper plate decreases with an increase in either magnetic parameter or Eckert number or Grashof number.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.