Abstract

A boundary-layer analysis is presented for the magnetohydrodynamic (MHD) forced convection flow of a nanofluid adjacent to a non-isothermal wedge. The model used for the nanofluid incorporates the effects of Brownian motion and thermophoresis. The governing partial differential equations are transformed into a set of non-similar equations and solved numerically by an efficient implicit, iterative, finite-difference method. Comparisons with previously published work are performed and excellent agreement is obtained. A parametric study of the physical parameters is conducted and a representative set of numerical results for the velocity, temperature, and nanoparticles volume fraction profiles as well as the local skin-friction coefficient and local Nusselt and Sherwood numbers are illustrated graphically to show interesting features of the solutions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call