Abstract
The chain rule for functionals is used to reduce the noncanonical Poisson bracket for magnetohydrodynamics (MHD) to one for axisymmetric and translationally symmetric MHD and hydrodynamics. The procedure for obtaining Casimir invariants from noncanonical Poisson brackets is reviewed and then used to obtain the Casimir invariants for the considered symmetrical theories. It is shown why extrema of the energy plus Casimir invariants correspond to equilibria, thereby giving an explanation for the ad hoc variational principles that have existed in plasma physics. Variational principles for general equilibria are obtained in this way.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.