Abstract

This present paper is concerned with the study of the magnetohydrodyamics (MHD) effects on mixed convection flow of an incompressible micropolar fluid over a stretching sheet in case of unsteady flow. Energy equation takes into account of thermal radiation. The stretching velocity is assumed to vary linearly with the distance along the sheet. Two equal and opposite forces are assumed to be impulsively applied along axial direction. The governing non-linear equations and their associated boundary conditions are first cast into a dimensionless form using local non-similarity transformations. The resulting equations are solved numerically using the Adams-Predictor Corrector method. A representative set of numerical results is displaced graphically to illustrate the influence of various physical parameters on velocity, microrotation profiles as well as the skin friction coefficient. It is found that there is a smooth transition from small-time solution to the large-time solution.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.