Abstract

Chemically skinned single fibers from adult rat skeletal muscles were used to test the hypothesis that, in mammalian muscle fibers, myosin heavy chain (MHC) isoform expression and Ca(2+)- or Sr(2+)-activation characteristics are only partly correlated. The fibers were first activated in Ca(2+)- or Sr(2+)-buffered solutions under near-physiological conditions, and then their MHC isoform composition was determined electrophoretically. Fibers expressing only the MHC I isoform could be appropriately identified on the basis of either the Ca(2+)- or Sr(2+)-activation characteristics or the MHC isoform composition. Fibers expressing one or a combination of fast MHC isoforms displayed no significant differences in their Ca(2+)- or Sr(2+)-activation properties; therefore, their MHC isoform composition could not be predicted from their Ca(2+)- or Sr(2+)-activation characteristics. A large proportion of fibers expressing both fast- and slow-twitch MHC isoforms displayed Ca(2+)- or Sr(2+)-activation properties that were not consistent with their MHC isoform composition; thus both fiber-typing methods were needed to fully characterize such fibers. These data show that, in rat skeletal muscles, the extent of correlation between MHC isoform expression and Ca(2+)- or Sr(2+)-activation characteristics is fiber-type dependent.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call