Abstract
The genetic architecture of fitness at the class IIB gene of the major histocompatibility complex (MHC) in the guppy Poecilia reticulata was analysed. Diversity at the MHC is thought to be maintained by some form of balancing selection; heterozygote advantage, frequency-dependent selection or spatially and temporally fluctuating selection. Here these hypotheses are evaluated by using an algorithm that partitions the effect of specific MHC allele and genotypes on fitness measures. The effect of MHC genotype on surrogate measures of fitness was tested, including growth rate (at high and low bulk food diets), parasite load following a parasite challenge and survival. The number of copies of the Pore_a132 MHC allele was inversely related to infection by Gyrodactylus flukes and it appeared to be positively related to faster growth. Also, genotypes combining the Pore_a132 or other relatively common alleles paired with rare MHC alleles produced both advantageous and detrimental non-additive effects. Thus, the genetic architecture underlying fitness at the MHC is complex in the P. reticulata.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.