Abstract

Melanoma is the most aggressive skin cancer in humans that often expresses MHC class II (MHC II) molecules, which could make these tumors eliminable by the immune system. However, this MHC II expression has been associated with poor prognosis, and there is a lack of immune-mediated eradication. The lymphocyte activation gene-3 (LAG-3) is a natural ligand for MHC II that is substantially expressed on melanoma-infiltrating T cells including those endowed with potent immune-suppressive activity. Based on our previous data showing the signaling capacity of MHC II in melanoma cells, we hypothesized that LAG-3 could contribute to melanoma survival through its MHC II signaling capacity in melanoma cells. In this study, we demonstrate that both soluble LAG-3 and LAG-3-transfected cells can protect MHC II-positive melanoma cells, but not MHC II-negative cells, from FAS-mediated and drug-induced apoptosis. Interaction of LAG-3 with MHC II expressed on melanoma cells upregulates both MAPK/Erk and PI3K/Akt pathways, albeit with different kinetics. Inhibition studies using specific inhibitors of both pathways provided evidence of their involvement in the LAG-3-induced protection from apoptosis. Altogether, our data suggest that the LAG-3-MHC II interaction could be viewed as a bidirectional immune escape pathway in melanoma, with direct consequences shared by both melanoma and immune cells. In the future, compounds that efficiently hinder LAG-3-MHC II interaction might be used as an adjuvant to current therapy for MHC II-positive melanoma.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.