Abstract

Visual navigation is an essential task for indoor robots and usually uses the map as assistance to providing global information for the agent. Because the traditional maps match the environments, the map-based and map-building-based navigation methods are limited in the new environments for obtaining maps. Although the deep reinforcement learning navigation method, utilizing the non-map-based navigation technique, achieves satisfactory performance, it lacks the interpretability and the global view of the environment. Therefore, we propose a novel abstract map for the deep reinforcement learning navigation method with better global relative position information and more reasonable interpretability. The abstract map is modeled as a Markov network which is used for explicitly representing the regularity of objects arrangement, influenced by people activities in different environments. Besides, a knowledge graph is utilized to initialize the structure of the Markov network, as providing the prior structure for the model and reducing the difficulty of model learning. Then, a graph neural network is adopted for probability inference in the Markov network. Furthermore, the update of the abstract map, including the knowledge graph structure and the parameters of the graph neural network, are combined into an end-to-end learning process trained by a reinforcement learning method. Finally, experiments in the AI2THOR framework and the physical environment indicate that our algorithm greatly improves the success rate of navigation in case of new environments, thus confirming the good generalization.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.