Abstract

The half-Heusler family consists of many semiconducting intermetallic compounds, virtually all of them having a valence electron count (VEC) of 18. We have studied an electron-deficient (VEC = 17) phase MgPdSb and its Pd-stuffed variant MgPd1.25Sb. The cubic F4̅3m crystal structure was confirmed by the Rietveld refinement of powder X-ray diffraction (XRD) data. The lattice parameter is a = 6.284 and 6.335 Å for MgPdSb and MgPd1.25Sb, respectively. The Debye temperature and Sommerfeld coefficient for MgPdSb are ΘD = 282 K and γ = 3.3 mJ mol–1 K–2, respectively, and are similar to those obtained for MgPd1.25Sb. There is neither phase transition nor superconductivity observed above 1.8 K. The differences between the electronic structures of Mg-based half-Heusler compounds make them robustly metallic, irrespective of the electron count and the introduction of interstitial transition metal (Pd) atoms.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.