Abstract
Perivascular adipose-derived stem cells (PV-ADSCs) could differentiate into smooth muscle cells (SMCs), participating in vascular remodeling. However, its underlying mechanism is not well explored. Our previous single-cell RNA-sequencing dataset identified a unique expression of matrix Gla protein (MGP) in PV-ADSCs compared with subcutaneous ADSCs. MGP involves in regulating SMC behaviors in vascular calcification and atherosclerosis. In this study, we investigated MGP’s role in PV-ADSCs differentiation toward SMCs in vitro and in vascular remodeling in vivo. PV-ADSCs were isolated from perivascular regions of mouse aortas. Quantitative reverse transcription–polymerase chain reaction (qRT-PCR), Western blot, and immunofluorescence confirmed higher MGP expression in PV-ADSCs. The MGP secretion increased along PV-ADSCs differentiation toward SMCs in response to transforming growth factor–beta 1 (TGF-β1). Lentivirus knockdown of MGP markedly promoted the bone morphogenetic protein 2 (BMP2) expression and phosphorylation of SMAD1/5/8 in PV-ADSCs, subsequently inhibiting its differentiation toward SMCs. Such inhibition could be partially reversed by further application of BMP2 inhibitors. On the contrary, exogenous MGP inhibited BMP2 expression and SMAD1/5/8 phosphorylation in PV-ADSCs, thereby promoting its differentiation toward SMCs. Transplantation of cultured PV-ADSCs, which was pretreated by MGP knockdown, in mouse femoral artery guide-wire injury model significantly alleviated neointimal hyperplasia. In conclusion, MGP promoted the differentiation of PV-ADSCs toward SMCs through BMP2/SMAD-mediated signaling pathway. This study offers a supplement to the society of perivascular tissues and PV-ADSCs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.