Abstract

A facile ball-milling method was developed to synthesize MgO/biochar nanocomposites as a dual-functional adsorbent. The physicochemical properties of the synthesized nanocomposites indicated that the composites achieved nano-scaled morphologies and mesoporous structure with MgO nanoparticles, which is approximate 20 nm and dispersed uniformly on the surface of the biochar matrix. Batch sorption experiments yielded 62.9% removal of phosphate, an anion, and 87.5% removal of methylene blue, a cationic organic dye, at low adsorbent dosages of 1.0 g L-1 and 0.2 g L-1, respectively. This work indicates that ball milling, as a facile and promising method for synthesis of carbon-metal oxide nanocomposites, lends the advantage of operational flexibility and chemical adjustability for targeted remediation of diverse environmental pollutants.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.