Abstract

The DNA damage repair enzyme, O6-methylguanine DNA methyltransferase (MGMT) is overexpressed in breast cancer, correlating directly with estrogen receptor (ER) expression and function. In ER negative breast cancer the MGMT promoter is frequently methylated. In ER positive breast cancer MGMT is upregulated and modulates ER function. Here, we evaluate MGMT’s role in control of other clinically relevant targets involved in cell cycle regulation during breast cancer oncogenesis. We show that O6-benzylguanine (BG), an MGMT inhibitor decreases CDC2, CDC20, TOP2A, AURKB, KIF20A, cyclin B2, A2, D1, ERα and survivin and induces c-PARP and p21 and sensitizes ER positive breast cancer to temozolomide (TMZ). Further, siRNA inhibition of MGMT inhibits CDC2, TOP2A, AURKB, KIF20A, Cyclin B2, A2 and survivin and induces p21. Combination of BG+TMZ decreases CDC2, CDC20, TOP2A, AURKB, KIF20A, Cyclin A2, B2, D1, ERα and survivin. Temozolomide alone inhibits MGMT expression in a dose and time dependent manner and increases p21 and cytochrome c. Temozolomide inhibits transcription of TOP2A, AURKB, KIF20A and does not have any effect on CDC2 and CDC20 and induces p21. BG+/-TMZ inhibits breast cancer growth. In our orthotopic ER positive breast cancer xenografts, BG+/-TMZ decreases ki-67, CDC2, CDC20, TOP2A, AURKB and induces p21 expression. In the same model, BG+TMZ combination inhibits breast tumor growth in vivo compared to single agent (TMZ or BG) or control. Our results show that MGMT inhibition is relevant for inhibition of multiple downstream targets involved in tumorigenesis. We also show that MGMT inhibition increases ER positive breast cancer sensitivity to alkylator based chemotherapy.

Highlights

  • methylguanine DNA methyltransferase (MGMT), a DNA repair protein, mediates resistance to alkylating agents

  • We show that O6-benzylguanine (BG), an MGMT inhibitor decreases CDC2, CDC20, TOP2A, AURKB, KIF20A, cyclin B2, A2, D1, ERα and survivin and induces c-PARP and p21 and sensitizes estrogen receptor (ER) positive breast cancer to temozolomide (TMZ)

  • BG induced MGMT inhibition leads to inhibition of CDC2, TOP2A, AURKB, KIF20A, CDC20 expression

Read more

Summary

Introduction

MGMT, a DNA repair protein, mediates resistance to alkylating agents. Increased MGMT expression level is exclusively a tumor phenotype trait as MGMT levels in normal tissues do not vary between patients with benign or malignant disease [1]. In ER positive breast cancer MGMT levels are up to 4-fold higher than in the normal breast [1, 3]. MGMT expression increases during tumor progression and correlates with the overall metastatic tumor burden and with the organ/tissue type harboring the metastatic disease [1, 4]. MGMT expression level correlates with ERα functional status / phosphorylation phenotype, as, when MGMT levels are 3-4 fold higher than in the normal breast tissue, ERα phosphorylation pattern changes from a tamoxifen sensitive (high p-ERα Ser167/low p-ERα Ser118) to a tamoxifen resistant (low p-ERα Ser167/high p-ERα Ser118 ERα) phosphorylation phenotype [4,5,6,7]

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call