Abstract

Hypoxia/ischemia induces proliferation of neural progenitor cells (NPCs) in rodent and human brain; however, the mechanisms remain unknown. We investigated the effects of metabotropic glutamate receptor 5 (mGluR5) on NPC proliferation under hypoxia, the expression of cyclin D1, and the activation of the mitogen-activated protein kinases (MAPKs) signaling pathway in cell culture. The results showed that hypoxia induced mGluR5 expression on NPCs in vitro. Under hypoxia, the mGluR5 agonists DHPG and CHPG significantly increased NPC proliferation in cell activity, diameter of neurospheres, bromodeoxyuridine (BrdU) incorporation and cell division, and expression of cyclin D1, with decreasing cell death. The mGluR5 siRNA and antagonist MPEP decreased the NPC proliferation and expression of cyclin D1, with increasing cell death. Phosphorylated JNK and ERK increased with the proliferation of NPCs after DHPG and CHPG treatment under hypoxia, while p-p38 level decreased. These results demonstrate that the expression of mGluR5 was upregulated during the proliferation of rat NPCs stimulated by hypoxia in vitro. The activation of the ERK and JNK signaling pathway and the expression of cyclin D1 were increased in this process. These finding suggest the involvement of mGluR5 in rat NPC proliferation and provide a target molecule in neural repair after ischemia/hypoxia injury of CNS.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.