Abstract

Metabotropic glutamate receptors (mGluRs) play a crucial role in regulation of phasic inhibition within the visual thalamus. Here we demonstrate that mGluR-dependent modulation of interneuron GABA release results in dynamic changes in extrasynaptic GABA(A) receptor (eGABA(A)R)-dependent tonic inhibition in thalamocortical (TC) neurons of the rat dorsal lateral geniculate nucleus (dLGN). Application of the group I selective mGluR agonist dihydroxyphenylglycine produces a concentration-dependent enhancement of both IPSC frequency and tonic GABA(A) current (I(GABA)tonic) that is due to activation of both mGluR1a and mGluR5 subtypes. In contrast, group II/III mGluR activation decreases both IPSC frequency and I(GABA)tonic amplitude. Using knock-out mice, we show that the mGluR-dependent modulation of I(GABA)tonic is dependent upon expression of δ-subunit containing eGABA(A)Rs. Furthermore, unlike the dLGN, no mGluR-dependent modulation of I(GABA)tonic is present in TC neurons of the somatosensory ventrobasal thalamus, which lacks GABAergic interneurons. In the dLGN, enhancement of IPSC frequency and I(GABA)tonic by group I mGluRs is not action potential dependent, being insensitive to TTX, but is abolished by the L-type Ca(2+) channel blocker nimodipine. These results indicate selective mGluR-dependent modulation of dendrodendritic GABA release from F2-type terminals on interneuron dendrites and demonstrate for the first time the presence of eGABA(A)Rs on TC neuron dendritic elements that participate in "triadic" circuitry within the dLGN. These findings present a plausible novel mechanism for visual contrast gain at the thalamic level and shed new light upon the potential role of glial ensheathment of synaptic triads within the dLGN.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.