Abstract

Crizotinib (CRIZO) has been widely employed to treat non‐small‐cell lung cancer. However, hepatic inflammatory injury is the major toxicity of CRIZO, which limits its clinical application, and the underlying mechanism of CRIZO‐induced hepatotoxicity has not been fully explored. Herein, we used cell counting kit‐8 assay and flow cytometry to detect CRIZO‐induced cytotoxicity on human hepatocytes (HL‐7702). CRIZO significantly reduced the survival rate of hepatocytes in a dose‐dependent manner. Furthermore, the reactive oxygen species (ROS) assay kit showed that CRIZO treatment strongly increased the level of ROS. In addition, CRIZO treatment caused the appearance of balloon‐like bubbles and autophagosomes in HL‐7702 cells. Subsequently, Western blotting, quantitative real‐time PCR and ELISA assays revealed that ROS‐mediated pyroptosis and autophagy contributed to CRIZO‐induced hepatic injury. Based on the role of ROS in CRIZO‐induced hepatotoxicity, magnesium isoglycyrrhizinate (MgIG) was used as an intervention drug. MgIG activated the Nrf2/HO‐1 signalling pathway and reduced ROS level. Additionally, MgIG suppressed hepatic inflammation by inhibiting NF‐κB activity, thereby reducing CRIZO‐induced hepatotoxicity. In conclusion, CRIZO promoted autophagy activation and pyroptosis via the accumulation of ROS in HL‐7702 cells. MgIG exerts therapeutic effects on CRIZO‐induced hepatotoxicity by decreasing the level of ROS.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.