Abstract

Intense and complex instrumental backgrounds, against which the much smaller signals from celestial sources have to be discerned, are a notorious problem for low and intermediate energy gamma-ray astronomy (~50 keV - 10 MeV). Therefore a detailed qualitative and quantitative understanding of instrumental line and continuum backgrounds is crucial for most stages of gamma-ray astronomy missions, ranging from the design and development of new instrumentation through performance prediction to data reduction. We have developed MGGPOD, a user-friendly suite of Monte Carlo codes built around the widely used GEANT (Version 3.21) package, to simulate ab initio the physical processes relevant for the production of instrumental backgrounds. These include the build-up and delayed decay of radioactive isotopes as well as the prompt de-excitation of excited nuclei, both of which give rise to a plethora of instrumental gamma-ray background lines in addition to continuum backgrounds. The MGGPOD package and documentation are publicly available for download from this http URL We demonstrate the capabilities of the MGGPOD suite by modeling high resolution gamma-ray spectra recorded by the Transient Gamma-Ray Spectrometer (TGRS) on board Wind during 1995. The TGRS is a Ge spectrometer operating in the 40 keV to 8 MeV range. Due to its fine energy resolution, these spectra reveal the complex instrumental background in formidable detail, particularly the many prompt and delayed gamma-ray lines. We evaluate the successes and failures of the MGGPOD package in reproducing TGRS data, and provide identifications for the numerous instrumental lines.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.