Abstract
The design of hybrid beamforming (HBF) is one of the key issues in millimeter wave (mmWave) and terahertz (THz) massive multi-input multi-output (MIMO) communications. In particular, only rank-deficient channel state information (CSI) can be acquired in hybrid MIMO architecture, which enhances design challenges. However, this practical problem of rank-deficient channels has been avoided by most of the existing studies on HBF. In this letter, we propose a new deep learning (DL) network model called Multi-Generator Generative Adversarial Network (MGGAN) to accomplish the design of HBF against rank-deficient channels. Specifically, MGGAN includes three generators for recovering the rank-deficient channels, achieving the analog and the digital beamforming matrices, respectively. In addition, a spectrum efficiency (SE) module is introduced to take system SE as the optimization goal of the network. Simulation results show the superiority of our proposed MGGAN model in SE performance over several DL network architectures and classical HBF algorithms. Moreover, it is more robust against the rank-deficiency of hybrid architecture MIMO channels.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.