Abstract

Pluronic 31R1 and MCM41 were utilized to synthesize mesoporous MgFe2O4/g-C3N4 heterostructures. The employed approach yields a high surface area product (120 m2g-1) with a bandgap (2.58 eV) that allows photocatalysis in the visible light regime. TEM images show an even distribution of spherical MgFe2O4 particles with sizes within the ∼10–15 nm range. Magnetization values of 44.0 emu g−1 for the optimal 3% MgFe2O4/g-C3N4 heterostructure were high compared to what have been reported. The photocatalytic ability MgFe2O4/g-C3N4 nanocomposite was greater than that of pure MgFe2O4 or g-C3N4. A tenfold increase in CIP photooxidation efficiency results from incorporation of MgFe2O4 nanoparticles onto g-C3N4 with a percentage concentration of 0–4%. The optimum photocatalyst concentration used was 1.6 g/L for a fast reaction time of 120 min. CIP photooxidation efficiency when using mesoporous 3% MgFe2O4/g-C3N4 was 100% while it was 10% for pure g-C3N4 and 18% for pure MgFe2O4. High dispersion of spherical MgFe2O4 nanoparticles on the surface of g-C3N4, the high surface area, narrow bandgap, the heterostructure that allows unhindered diffusion of CIP into the pore structure, and the superior charge-carrier separation ability resulted in the enhanced photocatalytic ability. Magnetic properties resin from MgFe2O4 addition facilitate the easy separation of the photocatalyst and allowing its recycling.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call