Abstract

Mg–Fe Layered Double Hydroxide (LDH) with M2+: M3+ 3:1 stoichiometric ratio was synthesized and employed as catalyst precursor for COx-free hydrogen production from ammonia. The resulting catalyst showed good catalytic activity. A series of Mg/Co–Fe layered double hydroxides were synthesized by replacing Mg2+ with Co2+ without disturbing M2+:M3+ ratio. The influence of nature and extent of Co(II) substitution on structure, morphology and surface properties were studied. A systematic study was carried out using these materials as catalyst precursors for ammonia decomposition. BET, XRD, TPR, XPS, CO2-TPD and TEM techniques were used to characterize the synthesized catalysts. These Fe-based catalysts are highly active, highly stable and not promoting any stable surface nitridation during the ammonia decomposition reaction. Among all catalysts, the Mg3Co3Fe2 catalyst showed the highest activity i.e. 100% conversion at 6,000 h−1 and 60% at 50,000 h−1 space velocities at 550 °C. The registered superior catalytic activity was result of the formed specific catalyst's properties like high surface area, high surface Co and Fe atomic concentration and suitable basicity. These Fe-based materials are, cost-effective, easily synthesize and highly stable, thus attractive for large-scale operation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.