Abstract

BackgroundIn our previous study, monogalactosyl diacylglycerol (MGDG) purified from spinach was found to have cytotoxic effects in human cancer cell lines. This study further assessed whether MGDG can enhance the cytotoxic effects of radiation in human pancreatic cancer cells in vitro and in vivo.MethodsGlycoglycerolipids from spinach including MGDG were extracted from dried spinach. The cytotoxicity of MGDG were evaluated by the MTT assay using four human pancreatic cancer cell lines (MIAPaCa-2, AsPC-1, BxPC-3 and PANC-1) and normal human dermal fibroblasts (NHDFs). The effects of radiation and MGDG alone or in combination in MIAPaCa-2 cells was analyzed with the colony forming and apoptosis assays, western blotting and cell cycle and DNA damage analyses (γ-H2AX foci staining and comet assay). The inhibitory effects on tumor growth were assessed in a mouse xenograft tumor model.ResultsMGDG showed dose- and time-dependent cytotoxicity, with half-maximal inhibitory concentrations (IC50) in PANC-1, BxPC-3, MIAPaCa-2 and AsPC-1 cells at 72 h of 25.6 ± 2.5, 26.9 ± 1.3, 18.5 ± 1.7, and 22.7 ± 1.9 μM, respectively. The colony forming assay revealed fewer MIAPaCa-2, BxPC-3 and AsPC-1 cell colonies upon treatment with both MGDG and radiation as compared to irradiation alone (P < 0.05). The combination of MGDG and radiation induced a higher proportion of apoptosis in MIAPaCa-2 cells; this effect was associated with increased mitochondrial release of cytochrome c and activation of cleaved poly (ADP-ribose) polymerase and caspase-3. DNA damage was detected and DNA repair mechanisms were more frequently impaired in cells receiving the combination treatment as compared to either one alone. Tumor growth was inhibited to a greater degree in mice treated by intratumoral injection of MGDG combined with irradiation as compared to either one alone (P < 0.05).ConclusionsThis is the first report demonstrating that MGDG enhances the cytotoxicity of radiation to induce apoptosis of cancer cells in vitro and in vivo. Our findings indicate that this therapeutic combination can be an effective strategy for the treatment of pancreatic cancer.

Highlights

  • In our previous study, monogalactosyl diacylglycerol (MGDG) purified from spinach was found to have cytotoxic effects in human cancer cell lines

  • Cell viability Compared to digalactosyl diacylglycerol (DGDG) or sulfoquinovosyl diacylglycerol (SQDG), MGDG showed distinct cytotoxic effects on human cancer cell growth (Table 1)

  • Induction of apoptosis The single treatments increased the rate of apoptosis (5.2% for MGDG and 8.8% for radiation), while the combination of both yielded a higher proportion of apoptotic cells (21.5%), suggesting that they had a synergistic effect on apoptosis induction (Fig. 3)

Read more

Summary

Introduction

Monogalactosyl diacylglycerol (MGDG) purified from spinach was found to have cytotoxic effects in human cancer cell lines. This study further assessed whether MGDG can enhance the cytotoxic effects of radiation in human pancreatic cancer cells in vitro and in vivo. The chloroplast thylakoid membrane of higher plants contains glycoglycerolipids such as monogalactosyl diacylglycerol (MGDG), digalactosyl diacylglycerol (DGDG) and sulfoquinovosyl diacylglycerol (SQDG) [7]; these compounds have potential anti-cancer functions including inhibition of DNA polymerase and suppression of cancer cell proliferation [8], with MGDG showing more potent anti-tumorigenic and anti-inflammatory activity than the others [9]. Our previous study showed that MGDG enhanced the cytotoxic effects of gemcitabine (GEM)—a key drug for treating pancreatic cancer—possibly by selectively inhibiting mammalian replicative DNA polymerases, pol γ [21]

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call