Abstract

Graph embedding is an important approach for graph analysis tasks such as node classification and link prediction. The goal of graph embedding is to find a low dimensional representation of graph nodes that preserves the graph information. Recent methods like Graph Convolutional Network (GCN) try to consider node attributes (if available) besides node relations and learn node embeddings for unsupervised and semi-supervised tasks on graphs. On the other hand, multi-layer graph analysis has been received attention recently. However, the existing methods for multi-layer graph embedding cannot incorporate all available information (like node attributes). Moreover, most of them consider either type of nodes or type of edges, and they do not treat within and between layer edges differently. In this paper, we propose a method called MGCN that utilizes the GCN for multi-layer graphs. MGCN embeds nodes of multi-layer graphs using both within and between layers relations and nodes attributes. We evaluate our method on the semi-supervised node classification task. Experimental results demonstrate the superiority of the proposed method to other multi-layer and single-layer competitors and also show the positive effect of using cross-layer edges.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.